
NOTE ON MMAT 5010: LINEAR ANALYSIS (2019 1ST TERM)

CHI-WAI LEUNG

1. Lecture 1

Throughout this note, we always denote K by the real field R or the complex field C. Let N be
the set of all natural numbers. Also, we write a sequence of numbers as a function x : {1, 2, ...} → K
or xi := x(i) for i = 1, 2....

Definition 1.1. Let X be a vector space over the field K. A function ‖ · ‖ : X → R is called a
norm on X if it satisfies the following conditions.

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(ii) ‖αx‖ = |α|‖x‖ for all α ∈ K and x ∈ X.

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

In this case, the pair (X, ‖ · ‖) is called a normed space.

Remark 1.2. Recall that a metric space is a non-empty set Z together with a function, ( called a
metric), d : Z × Z → R that satisfies the following conditions:

(i) d(x, y) ≥ 0 for all x, y ∈ Z; and d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x) for all x, y ∈ Z.

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y and z in Z.

For a normed space (X, ‖ · ‖), if we define d(x, y) := ‖x−y‖ for x, y ∈ X, then X becomes a metric
space under the metric d.

The following examples are important classes in the study of functional analysis.

Example 1.3. Consider X = Kn. Put

‖x‖p :=
( n∑
i=1

|xi|p
)1/p

and ‖x‖∞ := max
i=1,...,n

|xi|

for 1 ≤ p <∞ and x = (x1, ..., xn) ∈ Kn.
Then ‖ · ‖p (called the usual norm as p=2) and ‖ · ‖∞ (called the sup-norm) all are norms on Kn.

Example 1.4. Put

c0 := {(x(i)) : x(i) ∈ K, lim |x(i)| = 0}(called the null sequnce space)

and
`∞ := {(x(i)) : x(i) ∈ K, sup

i
|x(i)| <∞}.

Then c0 is a subspace of `∞. The sup-norm ‖ · ‖∞ on `∞ is defined by

‖x‖∞ := sup
i
|x(i)|
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for x ∈ `∞. Let

c00 := {(x(i)) : there are only finitly many x(i)’s are non-zero}.

Also, c00 is endowed with the sup-norm defined above and is called the finite sequence space.

Example 1.5. For 1 ≤ p <∞, put

`p := {(x(i)) : x(i) ∈ K,
∞∑
i=1

|x(i)|p <∞}.

Also, `p is equipped with the norm

‖x‖p := (
∞∑
i=1

|x(i)|p)
1
p

for x ∈ `p. Then ‖ · ‖p is a norm on `p (see [2, Section 9.1]).

Example 1.6. Let Cb(R) be the space of all bounded continuous R-valued functions f on R.
Now Cb(R) is endowed with the sup-norm, that is,

‖f‖∞ = sup
x∈R
|f(x)|

for every f ∈ Cb(R). Then ‖ · ‖∞ is a norm on Cb(R).
Also, we consider the following subspaces of Cb(X).
Let C0(R)

(
resp. Cc(R)

)
be the space of all continuous R-valued functions f on R which vanish

at infinity (resp. have compact supports), that is, for every ε > 0, there is a K > 0 such that
|f(x)| < ε (resp. f(x) ≡ 0) for all |x| > K.
It is clear that we have Cc(R) ⊆ C0(R) ⊆ Cb(R).
Now C0(R) and Cc(R) are endowed with the sup-norm ‖ · ‖∞.

From now on, we always let X be a normed sapce.

Definition 1.7. We say that a sequence (xn) in X converges to an element a ∈ X if lim ‖xn−a‖ =
0, that is, for any ε > 0, there is N ∈ N such that ‖xn − a‖ < ε for all n ≥ N .
In this case, (xn) is said to be convergent and a is called a limit of the sequence (xn).

Remark 1.8.
(i) If (xn) is a convergence sequence in X, then its limit is unique. In fact, if a and b both are the lim-
its of (xn), then we have ‖a−b‖ ≤ ‖a−xn‖+‖xn−b‖ → 0. So, ‖a−b‖ = 0 which implies that a = b.

We write limxn for the limit of (xn) provided the limit exists.

(ii) The definition of a convergent sequence (xn) depends on the underling space where the sequence
(xn) sits in. For example, for each n = 1, 2..., let xn(i) := 1/i as 1 ≤ i ≤ n and xn(i) = 0 as i > n.
Then (xn) is a convergent sequence in `∞ but it is not convergent in c00.

The following is one of the basic properties of a normed space. The proof is directly shown by
the triangle inequality and a simple fact that every convergent sequence (xn) must be bounded, i.e.,
there is a positive number M such that ‖xn‖ ≤M for all n = 1, 2, ....
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Proposition 1.9. The addition + : (x, y) ∈ X × X 7→ x + y ∈ X and the scalar multiplication
• : (λ, x) ∈ K×X 7→ λx ∈ X both are continuous maps. More precisely, if the convergent sequences
xn → x and yn → y in X, then we have xn + yn → x + y. Similarly, if a sequence of numbers
λn → λ in K, then we also have λnxn → λx.

A sequence (xn) in X is called a Cauchy sequence if for any ε > 0, there is N ∈ N such that
‖xm − xn‖ < ε for all m,n ≥ N . We have the following simple observation.

Proposition 1.10. Every convergent sequence in X is a Cauchy sequence.

Proof. Let (xn) be a convergent sequence with the limit a in X. Then for any ε > 0, there is
a positive integer N such that ‖xn − a‖ < ε for all n ≥ N . This implies that ‖xm − xn‖ ≤
‖xn − a‖+ ‖a− xm‖ < 2ε for all m,n ≥ N . Thus, (xn) is a Cauchy sequence. �

Remark 1.11. The converse of Proposition 1.10 does not hold.
For example, let X be the finite sequence space (c00, ‖ · ‖∞). If we consider the sequence xn :=
(1, 1/2, 1/3, ..., 1/n, 0, 0, ...) ∈ c00, then (xn) is a Cauchy sequence but it is not a convergent sequence
in c00.
In fact, if we are given any element a ∈ c00, then there exists a positive integer N such that a(i) = 0
for all i ≥ N . Thus we always have ‖xn − a‖∞ ≥ 1/N for all n ≥ N and thus, ‖xn − a‖∞ 9 0.
This implies that the sequence (xn) does not converge to any element in c00.

The following notation plays an important role in mathematics.

Definition 1.12. A normed space X is said to be a Banach space if every Cauchy sequence in X
must be convergent. The space X is also said to be complete in this case.

Example 1.13. With the notation as above, we have the following examples of Banach spaces.

(i) If Kn is equipped with the usual norm, then Kn is a Banach space.
(ii) `∞ is a Banach space. In fact, if (xn) is a Cauchy sequence in `∞, then for any ε > 0,

there is N ∈ N, we have

|xn(i)− xm(i)| ≤ ‖xn − xm‖∞ < ε

for all m,n ≥ N and i = 1, 2..... Thus, if we fix i = 1, 2, .., then (xn(i))∞n=1 is a Cauchy
sequence in K. Since K is complete, the limit limn xn(i) exists in K for all i = 1, 2.... Nor
for each i = 1, 2..., we put z(i) := limn xn(i) ∈ K. Then we have z ∈ `∞ and ‖z−xn‖∞ → 0.
So, limn xn = z ∈ `∞ (Check !!!!). Thus `∞ is a Banach space.

(iii) `p is a Banach space for 1 ≤ p <∞. The proof is similar to the case of `∞.
(iv) C[a, b] is a Banach space.
(v) Let C0(R) be the space of all continuous R-valued functions f on R which are vanish at

infinity, that is, for every ε > 0, there is a M > 0 such that |f(x)| < ε for all |x| > M .
Now C0(R) is endowed with the sup-norm, that is,

‖f‖∞ = sup
x∈R
|f(x)|

for every f ∈ C0(R). Then C0(R) is a Banach space.

Notation 1.14. For r > 0 and x ∈ X, let

(i) B(x, r) := {y ∈ X : ‖x− y‖ < r} (called an open ball with the center at x of radius r) and
B∗(x, r) := {y ∈ X : 0 < ‖x− y‖ < r}
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(ii) B(x, r) := {y ∈ X : ‖x− y‖ ≤ r} (called a closed ball with the center at x of radius r).

Put BX := {x ∈ X : ‖x‖ ≤ 1} and SX := {x ∈ X : ‖x‖ = 1} the closed unit ball and the unit
sphere of X respectively.

Definition 1.15. Let A be a subset of X.

(i) A point a ∈ A is called an interior point of A if there is r > 0 such that B(a, r) ⊆ A. Write
int(A) for the set of all interior points of A.

(ii) A is called an open subset of X if int(A) = A.

Example 1.16. We keep the notation as above.

(i) Let Z and Q denote the set of all integers and rational numbers respectively If Z and Q both
are viewed as the subsets of R, then int(Z) and int(Q) both are empty.

(ii) The open interval (0, 1) is an open subset of R but it is not an open subset of R2. In fact,
int(0, 1) = (0, 1) if (0, 1) is considered as a subset of R but int(0, 1) = ∅ while (0, 1) is
viewed as a subset of R2.

(iii) Every open ball is an open subset of X (Check!!).

Definition 1.17. Let A be a subset of X.

(i) A point z ∈ X is called a limit point of A if for any ε > 0, there is an element a ∈ A such
that 0 < ‖z − a‖ < ε, that is, B∗(z, ε) ∩A 6= ∅ for all ε > 0.
Furthermore, if A contains the set of all its limit points, then A is said to be closed in X.

(ii) The closure of A, write A, is defined by

A := A ∪ {z ∈ X : z is a limit point of A}.

Remark 1.18. With the notation as above:
(i) A set A is closed if and only if the following condition holds:

if (xn) is a sequence in A and is convergent in X, then limxn ∈ A.
(ii) A point z ∈ A if and only if B(z, r) ∩ A 6= ∅ for all r > 0. This is also equivalent to

saying that there is a sequence (xn) in A such that xn → a. In fact, this can be shown by
considering r = 1

n for n = 1, 2....

Proposition 1.19. With the notation as before, we have the following assertions.

(i) A is closed in X if and only if its complement X \A is open in X.
(ii) The closure A is the smallest closed subset of X containing A. The ”smallest” in here

means that if F is a closed subset containing A, then A ⊆ F .
Consequently, A is closed if and only if A = A.

Proof. If A is empty, then the assertions (i) and (ii) both are obvious. Now assume that A 6= ∅.
For part (i), let C = X \ A and b ∈ C. Suppose that A is closed in X. If there exists an element
b ∈ C \ int(C), then B(b, r) " C for all r > 0. This implies that B(b, r) ∩ A 6= ∅ for all r > 0 and
hence, b is a limit point of A since b /∈ A. It contradicts to the closeness of A. So, C = int(C) and
thus, C is open.
For the converse of (i), assume that C is open in X. Assume that A has a limit point z but z /∈ A.
Since z /∈ A, z ∈ C = int(C) because C is open. Hence, we can find r > 0 such that B(z, r) ⊆ C.
This gives B(z, r) ∩ A = ∅. This contradicts to the assumption of z being a limit point of A. So,
A must contain all of its limit points and hence, it is closed.

For part (ii), we first claim that A is closed. Let z be a limit point of A. Let r > 0. Then there
is w ∈ B∗(z, r) ∩ A. Choose 0 < r1 < r small enough such that B(w, r1) ⊆ B∗(z, r). Since w is a
limit point of A, we have ∅ 6= B∗(w, r1)∩A ⊆ B∗(z, r)∩A. So, z is a limit point of A. Thus, z ∈ A
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as required. This implies that A is closed.
It is clear that A is the smallest closed set containing A.
The last assertion follows from the minimality of the closed sets containing A immediately.
The proof is finished. �

Example 1.20. Retains all notation as above. We have c00 = c0 ⊆ `∞.
Consequently, c0 is a closed subspace of `∞ but c00 is not.

Proof. We first claim that c00 ⊆ c0. Let z ∈ `∞. It suffices to show that if z ∈ c00, then z ∈ c0, that
is, lim

i→∞
z(i) = 0. Let ε > 0. Then there is x ∈ B(z, ε)∩ c00 and hence, we have |x(i)− z(i)| < ε for

all i = 1, 2..... Since x ∈ c00, there is i0 ∈ N such that x(i) = 0 for all i ≥ i0. Therefore, we have
|z(i)| = |z(i)− x(i)| < ε for all i ≥ i0. So, z ∈ c0 as desired.

For the reverse inclusion, let w ∈ c0. It needs to show that B(w, r) ∩ c00 6= ∅ for all r > 0. Let
r > 0. Since w ∈ c0, there is i0 such that |w(i)| < r for all i ≥ i0. If we let x(i) = w(i) for 1 ≤ i < i0
and x(i) = 0 for i ≥ i0, then x ∈ c00 and ‖x− w‖∞ := sup

i=1,2...
|x(i)− w(i)| < r as required. �

Proposition 1.21. Let Y be a subspace of a Banach space X. Then Y is a Banach space if and
only if Y is closed in X.

Proof. For the necessary condition, we assume that Y is a Banach space. Let z ∈ Y . Then there
is a convergent sequence (yn) in Y such that yn → z. Since (yn) is convergent, it is also a Cauchy
sequence in Y . Then (yn) is also a convergent sequence in Y because Y is a Banach space. So,
z ∈ Y . This implies that Y = Y and hence, Y is closed.
For the converse statement, assume that Y is closed. Let (zn) be a Cauchy sequence in Y . Then
it is also a Cauchy sequence in X. Since X is complete, z := lim zn exists in X. Note that z ∈ Y
because Y is closed. So, (zn) is convergent in Y . Thus, Y is complete as desired. �

Corollary 1.22. c0 is a Banach space but the finite sequence c00 is not.

Proposition 1.23. Let (X, ‖ · ‖) be a normed space. Then there is a normed space (X0, ‖ · ‖0),
together with a linear map i : X → X0, satisfy the following condition.

(i) X0 is a Banach space.
(ii) The map i is an isometry, that is, ‖i(x)‖0 = ‖x‖ for all x ∈ X.

(iii) the image i(X) is dense in X0, that is, i(X) = X0.

Moreover, such pair (X0, i) is unique up to isometric isomorphism in the following sense: if (W, ‖ ·
‖1) is a Banach space and an isometry j : X →W is an isometry such that j(X) = W , then there
is an isometric isomorphism ψ from X0 onto W such that

j = ψ ◦ i : X → X0 →W.

In this case, the pair (X0, i) is called the completion of X.

Example 1.24. Proposition 1.23 cannot give an explicit form of the completion of a given normed
space. The following examples are basically due to the uniqueness of the completion.

(i) If X is a Banach space, then the completion of X is itself.
(ii) By Corollary 1.22, the completion of the finite sequence space c00 is the null sequence space

c0.
(iii) The completion of Cc(R) is C0(R).
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2. Lecture 2

Throughout this section, (X, d) always denotes a metric space. Let (xn) be a sequence in X.
Recall that a subsequence (xnk)∞k=1 of (xn) means that (nk)

∞
k=1 is a sequence of positive integers

satisfying n1 < n2 < · · · < nk < nk+1 < · · · , that is, such sequence (nk) can be viewed as a strictly
increasing function n : k ∈ {1, 2, ..} 7→ nk ∈ {1, 2, ...}.
In this case, note that for each positive integer N , there is K ∈ N such that nK ≥ N and thus we
have nk ≥ N for all k ≥ K.

Proposition 2.1. Let (xn) be a sequence in X. Then the following statements are equivalent.

(i) (xn) is convergent.
(ii) Any subsequence (xnk) of (xn) converges to the same limit.

(iii) Any subsequence (xnk) of (xn) is convergent.

Proof. Part (ii)⇒(i) is clear because the sequence (xn) is also a subsequence of itself.
For the Part (i) ⇒ (ii), assume that limxn = a ∈ X exists. Let (xnk) be a subsequence of (xn).
We claim that limxnk = a. Let ε > 0. In fact, since limxn = a, there is a positive integer N such
that d(a, xn) < ε for all n ≥ N . Notice that by the definition of a subsequence, there is a positive
integer K such that nk ≥ N for all k ≥ K. So, we see that d(a, xnk) < ε for all k ≥ K. Thus we
have limk→∞ xnk = a.
Part (ii)⇒ (iii) is clear.
It remains to show Part (iii) ⇒ (ii). Suppose that there are two subsequences (xni)

∞
i=1 and

(xmi)
∞
i=1 converge to distinct limits. Now put k1 := n1. Choose mi′ such that n1 < mi′ and then

put k2 := mi′ . Then we choose ni such that k2 < ni and put k3 for such ni. To repeat the same
step, we can get a subsequence (xki)

∞
i=1 of (xn) such that xk2i = xni′ for some ni′ and xk2i−1

= xmj′
for some mj′ . Since by the assumption limi xni 6= limi xmi , limi xki does not exist which leads to a
contradiction.
The proof is finished. �

We now recall the following important theorem in R (see [1, Theorem 3.4.8]).

Theorem 2.2. Bolzano-Weierstrass Theorem Every bounded sequence in R has a convergent
subsequence.

Definition 2.3. X is said to be compact if for every sequence in X has a convergent subsequence.
In particular, a subset A of X is compact if every sequence in A has a convergent subsequence with
the limit in A.

Example 2.4. (i) Every closed and bounded interval is compact.
In fact, if (xn) is any sequence in a closed and bounded interval [a, b], then (xn) is bounded.
Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (xn) has a convergent
subsequence (xnk). Notice that since a ≤ xnk ≤ b for all k, then a ≤ limk xnk ≤ b, and thus
limk xnk ∈ [a, b]. Therefore A is sequentially compact.

(ii) (0, 1] is not sequentially compact. In fact, if we consider xn = 1/n, then (xn) is a sequence
in (0, 1] but it has no convergent subsequence with the limit sitting in (0, 1].

Proposition 2.5. If A is a compact subset of X, then A must be a closed and bounded subset of
X.

Proof. We first claim that A is bounded. Suppose not. We suppose that A is unbounded. If we
fix an element x1 ∈ A, then there is x2 ∈ A such that d(x1, x2) > 1. Using the unboundedness of
A, we can find an element x3 in A such that d(x3, xk) > 1 for k = 1, 2. To repeat the same step,
we can find a sequence (xn) in A such that d(xn, xm) > 1 for n 6= m. Thus A has no convergent
subsequence. Thus A must be bounded
Finally, we show that A is closed in X. Let (xn) be a sequence in A and it is convergent. It needs
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to show that limn xn ∈ A. Note that since A is compact, (xn) has a convergent subsequence (xnk)
such that limk xnk ∈ A. Then by Proposition 2.1, we see that limn xn = limk xnk ∈ A. The proof
is finished. �

Corollary 2.6. Let A be a subset of R. Then A is compact if and only if A is a closed and bounded
subset.

Proof. The necessary part follows from Proposition 2.5 at once.
Now suppose that A is closed and bounded. Let (xn) be a sequence in A and thus (xn) is a bounded
sequence in R. Then by the Bolzano-Weierstrass Theorem, (xn) has a subsequence (xnk) which is
convergent in R. Since A is closed, limk xnk ∈ A. Therefore, A is sequentially compact. �

Remark 2.7. From Corollary 2.6, we see that the converse of Proposition 2.5 holds when X = R,
but it does not hold in general. For example, if X = `∞(N) and A is the closed unit ball in `∞(N),
that is A := {x ∈ `∞(N) : ‖x‖∞ ≤ 1}, then A is closed and bounded subset of `∞(N) but it is not
sequentially compact. Indeed, if we put en := (en,i)

∞
i=1 ∈ `∞(N), where en,i = 1 as i = n; otherwise,

en,i = 0. Then (en) is a sequence in A but it has no convergent subsequence because ‖en−em‖∞ = 2
for n 6= m.

3. Lecture 3

Definition 3.1. We say that two norms ‖ · ‖ and ‖ · ‖′ on a vector space X are equivalent, write
‖ · ‖ ∼ ‖ · ‖′, if there are positive numbers c1 and c2 such that c1‖ · ‖ ≤ ‖ · ‖′ ≤ c2‖ · ‖ on X.

Example 3.2. Consider the norms ‖ · ‖1 and ‖ · ‖∞ on `1. We are going to show that ‖ · ‖1 and
‖ · ‖∞ are not equivalent. In fact, if we put xn(i) := (1, 1/2, ..., 1/n, 0, 0, ....) for n, i = 1, 2.... Then
xn ∈ `1 for all n. Notice that (xn) is a Cauchy sequence with respect to the norm ‖ · ‖∞ but it is
not a Cauchy sequence with respect to the norm ‖ · ‖1. Hence ‖ · ‖1 � ‖ · ‖∞ on `1.

Example 3.3. Recall that the space L∞([0, 1]) is the set of all essential bounded functions defined
on [0, 1], that is, the set of all R-valued functions f defined on [0, 1] such that there is M > 0
satisfying the condition: λ{x ∈ [0, 1] : |f(x)| > M} = 0, where λ denotes the Lebesgue measure on
[0, 1]. In this case,

‖f‖∞ := inf{M : λ{x ∈ [0, 1] : |f(x)| > M} = 0}.
On the other hand, L1[0, 1] denotes the space of all integrable functions on [0, 1], that is the set of
measurable R-valued functions on [0, 1] satisfying the condition:∫ 1

0
|f(x)|dλ(x) <∞.

Also, we define ‖f‖1 :=
∫ 1
0 |f(x)|dλ(x).

It is a known fact that (L∞([0, 1]), ‖ · ‖∞) and (L1([0, 1]), ‖ · ‖1) both are Banach spaces. (see [2,
Section 9.2]).
It is clear that L∞[0, 1] ⊆ L1[0, 1].
Claim: The norms ‖ · ‖∞ and ‖ · ‖1 are not equivalent on L∞[0, 1].
For showing the Claim, it suffices to find a sequence (fn) in L∞[0, 1] that is convergent in L1[0, 1]
but it is divergent in L∞[0, 1].
Now for each positive integer i, we define a function ei(x) on [0, 1] by ei(x) ≡ 1 if x ∈ ( 1

i+1 ,
1
i );

otherwise, set ei(x) ≡ 0. Define

f(x) :=
∞∑
i=1

√
iei(x)
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for x ∈ [0, 1]. Notice that f ∈ L1[0, 1] because we have∫ 1

0
|f(x)|dλ(x) =

∞∑
i=1

√
iλ(

1

i+ 1
,
1

i
) =

∞∑
i=1

√
i|1
i
− 1

i+ 1
| ≤

∞∑
i=1

1

i3/2
<∞.

On the other hand, for each positive integer n, let

fn(x) :=
n∑
i=1

√
iei(x)

for x ∈ [0, 1]. Then each fn ∈ L∞[0, 1] and ‖fn − f‖1 → 0 since we have

‖f − fn‖1 =
∞∑

i=n+1

√
i|1
i
− 1

i+ 1
| ≤

∞∑
i=n+1

1

i3/2
→ 0 as n→∞.

However, we note that f /∈ L∞[0, 1], that is, for each M > 0, we have λ{x ∈ [0, 1] : |f(x)| > M} > 0.
Indeed, given any M > 0, we can find a positive integer i0 such that

√
i0 > M . Then by the

construction of f , we have f(x) > M for all x ∈ ( 1
i0+1 ,

1
i0

). This implies that

λ{x ∈ [0, 1] : |f(x)| > M} > 1

i0(i0 + 1)
> 0.

Therefore, the sequence (fn) must be divergent in L∞[0, 1], otherwise, the limit of (fn) must be f
that contradicts to f /∈ L∞[0, 1] above. So, the sequence (fn) is as required.

Proposition 3.4. All norms on a finite dimensional vector space are equivalent.

Proof. Let X be a finite dimensional vector space and let {e1, ..., eN} be a vector base of X. For

each x =
∑N

i=1 αiei for αi ∈ K, define ‖x‖0 =
∑n

i=1 |αi|. Then ‖ · ‖0 is a norm X. The result is
obtained by showing that all norms ‖ · ‖ on X are equivalent to ‖ · ‖0.
Notice that for each x =

∑N
i=1 αiei ∈ X, we have ‖x‖ ≤ ( max

1≤i≤N
‖ei‖)‖x‖0. It remains to find

c > 0 such that c‖ · ‖0 ≤ ‖ · ‖. In fact, let KN be equipped with the sup-norm ‖ · ‖∞, that is
‖(α1, ..., αN )‖∞ = max1≤1≤N |αi|. Define a real-valued function f on the unit sphere SKN of KN
by

f : (α1, ..., αN ) ∈ SKN 7→ ‖α1e1 + · · ·+ αneN‖.
Notice that the map f is continuous and f > 0. It is clear that SKN is compact with respect to the
sup-norm ‖ · ‖∞ on KN . Hence, there is c > 0 such that f(α) ≥ c > 0 for all α ∈ SKN . This gives
‖x‖ ≥ c‖x‖0 for all x ∈ X as desired. The proof is finished. �

The following result is clear. The proof is omitted here.

Lemma 3.5. Let X be a normed space. Then the closed unit ball BX is compact if and only if
every bounded sequence in X has a convergent subsequence.

Proposition 3.6. We have the following assertions.

(i) All finite dimensional normed spaces are Banach spaces. Consequently, any finite dimen-
sional subspace of a normed space must be closed.

(ii) The closed unit ball of any finite dimensional normed space is compact.

Proof. Let (X, ‖ · ‖) be a finite dimensional normed space. With the notation as in the proof of
Proposition 3.4 above, we see that ‖ · ‖ must be equivalent to the norm ‖ · ‖0. It is clear that X is
complete with respect to the norm ‖ · ‖0 and so is complete in the original norm ‖ · ‖. The Part (i)
follows.
For Part (ii), by using Lemma 3.5, we need to show that any bounded sequence has a convergent
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subsequence. Let (xn) be a bounded sequence in X. Since all norms on a finite dimensional normed
space are equivalent, it suffices to show that (xn) has a convergent subsequence with respect to the
norm ‖ · ‖0.
Using the notation as in Proposition 3.4, for each xn, put xn =

∑N
k=1 αn,kek, n = 1, 2.... Then

by the definition of the norm ‖ · ‖0, we see that (αn,k)
∞
n=1 is a bounded sequence in K for each

k = 1, 2..., N . Then by the Bolzano-Weierstrass Theorem, for each k = 1, ..., N , we can find a
convergent subsequence (αnj ,k)

∞
j=1 of (αn,k)

∞
n=1. Put γk := limj→∞ αnj ,k ∈ K, for k = 1, .., N . Put

x :=
∑N

k=1 γkek. Then by the definition of the norm ‖ · ‖0, we see that ‖xnj − x‖0 → 0 as j →∞.
Thus, (xn) has a convergent subsequence as desired.
The proof is complete. �

In the rest of this section, we are going to show the converse of Proposition 3.6 (ii) also holds.
Before showing the main theorem in this section, we need the following useful result.

Lemma 3.7. Riesz’s Lemma: Let Y be a closed proper subspace of a normed space X. Then for
each θ ∈ (0, 1), there is an element x0 ∈ SX such that d(x0, Y ) := inf{‖x0 − y‖ : y ∈ Y } ≥ θ.

Proof. Let u ∈ X − Y and d := inf{‖u − y‖ : y ∈ Y }. Notice that since Y is closed, d > 0
and hence, we have 0 < d < d

θ because 0 < θ < 1. This implies that there is y0 ∈ Y such that

0 < d ≤ ‖u − y0‖ < d
θ . Now put x0 := u−y0

‖u−y0‖ ∈ SX . We are going to show that x0 is as desired.

Indeed, let y ∈ Y . Since y0 + ‖u− y0‖y ∈ Y , we have

‖x0 − y‖ =
1

‖u− y0‖
‖u− (y0 + ‖u− y0‖y)‖ ≥ d/‖u− y0‖ > θ.

So, d(x0, Y ) ≥ θ. �

Remark 3.8. The Riesz’s lemma does not hold when θ = 1.

Theorem 3.9. Let X be a normed space. Then the following statements are equivalent.

(i) X is a finite dimensional normed space.
(ii) The closed unit ball BX of X is compact.

(iii) Every bounded sequence in X has convergent subsequence.

Proof. The implication (i)⇒ (ii) follows from Proposition 3.6 (ii) at once.
Lemma 3.5 gives the implication (ii)⇒ (iii).
Finally, for the implication (iii) ⇒ (i), assume that X is of infinite dimension. Fix an element
x1 ∈ SX . Let Y1 = Kx1. Then Y1 is a proper closed subspace of X. The Riesz’s lemma gives an
element x2 ∈ SX such that ‖x1−x2‖ ≥ 1/2. Now consider Y2 = span{x1, x2}. Then Y2 is a proper
closed subspace of X since dimX =∞. To apply the Riesz’s Lemma again, there is x3 ∈ SX such
that ‖x3 − xk‖ ≥ 1/2 for k = 1, 2. To repeat the same step, there is a sequence (xn) ∈ SX such
that ‖xm − xn‖ ≥ 1/2 for all n 6= m. Thus, (xn) is a bounded sequence but it has no convergent
subsequence by using the similar argument as in Proposition 5.2. So, the condition (iii) does not
hold if dimX =∞. The proof is finished. �
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